In [1]:
from IPython.display import display, HTML, Image
from wand.image import Image as WImage
In [2]:
s = """

<style>

div.cell, div.text_cell_render {
        width:100%;
        margin-left:1%;
        margin-right:auto;
}

.rendered_html {
    font-family: "proxima-nova", helvetica;
    font-size: 150%;
    line-height: 1.3;
}

.rendered_html h1 {
    margin: 0.25em 0em 0.5em;
    # color: #015C9C;
    color: #CC3300;
    text-align: center;
    line-height: 1.2; 
    page-break-before: always;
    font-size: 250%;
}

.rendered_html h2 {
    margin: 1.1em 0em 0.5em;
    color: black;
    line-height: 1.2;
    text-align: center;
}

.rendered_html h3 {
    margin: 1.1em 0em 0.5em;
    color: black;
    line-height: 1.2;
}

.rendered_html li {
    font-size: 120%
    line-height: 1.5;
}

.prompt {
    font-size: 120%; 
}

.CodeMirror-lines {
    font-size: 120%; 
}

.output_area {
    font-size: 120%; 
}

#notebook {
#     background-image: url('files/images/witewall_3.png');
# }

h1.bigtitle {
    margin: 4cm 1cm 4cm 1cm;
    font-size: 300%;
}

h3.point {
    font-size: 200%;
    text-align: center;
    margin: 2em 0em 2em 0em;
    color: #26465D;
}

.logo {
    margin: 20px 0 20px 0;
}

a.anchor-link {
    display: none;
}

h1.title { 
    font-size: 250%;
}

# div.cell{
#         max-width:750px;
#         margin-left:auto;
#         margin-right:auto;
# }


</style>
"""

display(HTML(s))

Comprehensive Bifurcation Analysis
in a Neuromuscularly-Controlled
In Vivo Canine Larynx

Juergen Neubauer and Dinesh K. Chhetri

Simon Levin MCMSC @ ASU
Head and Neck Surgery @ UCLA

ICVPB Salt Lake City, 2014

Supported by NIH RO1 DC011300

Wanted

Complete description of the vocal fold dynamics in an in vivo model

Why

Neuro-muscular control of F0, loudness, voice quality, pathologies

Dynamic equivalence of larynges of different species

Model validation

Bifurcation analysis in in vivo dog experiment

Phonation onset, a Hopf bifurcation during air flow ramp

Observed bifurcations

Hopf bifurcation

Subharmonic bifurcation

Frequency jumps

Secondary Hopf bifurcation

Sudden transition to chaotic vibrations

Bifurcations induced by neuromuscular control

Computer-controlled, automated pulse train sequences (1500 ms)

Bifurcations induced by air flow ramp

Computer-controlled linear flow ramp -- Increasing subglottal pressure

Left-right asymmetric stimulation

right SLN versus left SLN, constant mid RLN

Agonist-antagonist imbalance

TA versus trunk RLN (LCA/IA), constant No SLN

F0 for SLN-TA-trunk RLN manipulation

chest and falsetto-like clusters at phonation onset

Tight experimental control. Fast and automated setup and experiments.

Controller
In vivo dog model
Extensive control and
recording infrastructure

Computer-controlled, automated sequences of nerve stimulation pulse trains (8 nerves)

Rapid setup

Binary search for threshold of nerve excitation (one threshold in 10 seconds)

Fast experiments: New recording every 5 seconds

High speed video: prephonatory posturing, vocal fold vibration

5:20 min for 64 stimulation conditions

Replication possible!

First take ---- Second take

Left recurrent nerve paralysis: both SLN versus right RLN

Complete bifurcation behavior provides a metric to compare dynamical systems

Metric to measure dynamical equivalence of different larynes: human, dog, bats, etc

Metric to evaluate intervention procedures for voice pathologies: implants, arytenoid adduction, injection